Bosons and fermions interacting integrably with the Korteweg-de Vries field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L869
(http://iopscience.iop.org/0305-4470/17/16/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:14

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Bosons and fermions interacting integrably with the Korteweg-de Vries field

B A Kupershmidt
The University of Tennessee Space Institute, Tullahoma, Tn 37388, USA

Received 31 August 1984

Abstract

Two different super-integrable extensions of the Korteweg-de Vries equation and associated systems are discussed.

Every integrable system in the Lax form (Wilson 1979)

$$
\begin{equation*}
L_{t}=\left[P_{+}, L\right], \tag{1}
\end{equation*}
$$

with (matrix) differential operators L and P_{+},

$$
\begin{equation*}
L=\sum_{i=0}^{n} u_{i} \xi^{i}, \quad \xi \equiv \partial \equiv \partial / \partial x, \tag{2}
\end{equation*}
$$

can be extended out to include additional variables by adding to L in (2) a pseudodifferential tail:

$$
L \rightarrow \tilde{L}=L+\sum_{s} \mu_{s} \xi^{-1} \nu_{s}^{t}
$$

where, for each s, μ_{s} and ν_{s} are either both even (bosons) or both odd (fermions). This procedure provides a canonical way to extend standard integrable differential Lax equations. The extended systems remain integrable: all the flows (1), for various P commuting with L, commute and have an infinite common set of conservation laws, as follows from general facts about Lax equations (Wilson 1979, Kupershmidt 1982b). Analogous extensions exist for discrete Lax equations (Kupershmidt 1982a, b) and for standard super-integrable differential Lax equations (Kupershmidt 1984b).

When L is either self-adjoint or skew-adjoint: $L^{+}= \pm L$, the variables μ_{s} and ν_{s} in (2^{\prime}) can be specialised such that $\tilde{L}^{\dagger}= \pm \tilde{L}$ as well, e.g.

$$
\begin{array}{lll}
\nu_{s}=\mu_{s} A_{s}, & A_{s}^{t}= \pm A_{s}, & \nu_{s} \text { and } \mu_{s} \text { are fermions, } \\
\nu_{s}=\mu_{s} A_{s}, & A_{s}^{t}=\mp A_{s}, & \nu_{s} \text { and } \mu_{s} \text { are bosons }, \tag{3b}
\end{array}
$$

where A_{s} are constant matrices. Other possibilities for the tail, especially when L is a scalar operator, include
$\tilde{L}^{\dagger}=\tilde{L}: \sum \mu_{s} \xi^{-1} \mu_{s}^{t}, \quad \tilde{L}^{\dagger}=-\tilde{L}: \sum\left(\mu_{s} \xi^{-1} \nu_{s}^{t}-\nu_{s} \xi^{-1} \mu_{s}^{t}\right) \quad$ (fermions),
$\tilde{L}^{\dagger}=\tilde{L}: \sum\left(\mu_{s} \xi^{-1} \nu_{s}^{t}-\nu_{s} \xi^{-1} \mu_{s}^{t}\right), \quad \tilde{L}^{\dagger}=-\tilde{L}: \sum \mu_{s} \xi^{-1} \mu_{s}^{t} \quad$ (bosons).
Not much else is known at the present time about super-intregrable systems in general and super-extensions of the standard integrable systems in particular (the word
'super' refers to the presence of fermions and/or bosons), with the exception of supersymmetric σ-models (D'Auria and Sciuto 1980), supersymmetric Toda lattices (Ol'shanetsky 1983), and supersymmetric KP hierarchy (Manin and Radul 1984). In particular, there is no theoretical information available (outside the usual method of factorising the Lax operator (2^{\prime}) about the central object in the theories of integrable systems: the Miura map. In this note I shall discuss, in the case of the Korteweg-de Vries (KdV) equation, two practical instances where the Miura map does exist although its origin remains a mystery.

The first case is a slight generalisation of the s-KdV system in Kupershmidt (1984a):

$$
\begin{array}{ccc}
u_{t}=\partial\left(3 u^{2}-u_{x x}+12 E_{1}\right), & \\
\boldsymbol{\varphi}_{t}=P_{1}(\boldsymbol{\varphi}), \quad z_{t}=P_{1}(z), & y_{t}=P_{1}(y), \\
p(u)=p\left(z_{j}\right)=p\left(y_{j}\right)=0, & p\left(\varphi_{i}\right)=1 \\
E_{1}=E_{1}[\varphi, z, y]:=\varphi^{t} \varphi_{x}+3\left(z^{t} y_{x}-y^{t} z_{x}\right), & P_{1}=P_{1}[u]=3(u \partial+\partial u)-4 \partial^{3}, \tag{6}
\end{array}
$$

where $p(\sigma)=0$ or 1 according to whether σ is boson or fermion. The system (5)-(6) has the Lax representation (1) with

$$
\begin{equation*}
L=-\xi^{2}+u+\varphi^{t} \xi^{-1} \varphi+z^{t} \xi^{-1} y-y^{t} \xi^{-1} z, \quad P_{+}=P_{1} \tag{7}
\end{equation*}
$$

so that $\tilde{L}^{\dagger}=\tilde{L}$ by (4). The first Hamiltonian structure of (5)-(6) is

$$
\begin{align*}
& u_{t}=\partial(\delta H / \delta u), \quad \varphi_{i, t}=\frac{1}{4} \delta H / \delta \varphi_{i}, \quad z_{j, t}=-\frac{1}{12} \delta H / \delta y_{j,} \\
& y_{j, t}=\frac{1}{12} \delta H / \delta z_{j}, \tag{8}\\
& H=u^{3}+\frac{1}{2} u_{x}^{2}+12 u E_{1}-8 \varphi^{t} \varphi_{x x x}-48 z^{\prime} y_{x x x} . \tag{9}
\end{align*}
$$

Unless z and y are both absent and φ is a scalar, there is no second Hamiltonian structure for (5)-(6): thus, even if the Miura map exists it must lose its Hamiltonian property (Kupershmidt and Wilson 1981).

The s-MKdV system corresponding to (5)-(6)

$$
\begin{align*}
& v_{t}=\partial\left(2 v^{3}-v_{x x}+6 v E_{2}+3 E_{2, x}\right), \\
& \boldsymbol{\alpha}_{t}=P_{2}(\boldsymbol{\alpha}), \quad \boldsymbol{a}_{t}=P_{2}(\boldsymbol{a}), \quad \boldsymbol{b}_{t}=P_{2}(\boldsymbol{b}), \tag{10}\\
& p(v)=p\left(a_{j}\right)=p\left(b_{j}\right)=0, \quad p\left(\alpha_{t}\right)=1, \\
& E_{2}=E_{1}[\boldsymbol{\alpha}, \boldsymbol{a}, \boldsymbol{b}], \quad P_{2}=P_{1}\left[v^{2}-v_{x}\right]+6 E_{2} \partial-3 E_{2, x}, \tag{11}
\end{align*}
$$

is mapped into the $s-K d V$ system (5)-(6) by the Miura map
$u=v^{2}+v_{x}+E_{2}, \quad \boldsymbol{\varphi}=(\partial+v)(\boldsymbol{\alpha}), \quad z=(\partial+v)(\boldsymbol{a}), \quad y=(\partial+v)(\boldsymbol{b})$.
The system (10)-(11) is Hamiltonian only when \boldsymbol{a} and \boldsymbol{b} are absent and $\boldsymbol{\alpha}$ is a scalar. Since (5)-(6) is Galilean invariant, one uses (12) by the method of Kupershmidt (1982c) to construct a deformation of (5)-(6):

$$
\begin{align*}
& U_{t}=\partial\left(3 U^{2}-U_{x x}+2 \varepsilon^{2} U^{3}+12\left(1+2 \varepsilon^{2} U\right) E_{3}+12 \varepsilon E_{3, x}\right), \\
& \boldsymbol{\Phi}_{t}=P_{3}(\boldsymbol{\Phi}), \quad \boldsymbol{Z}_{t}=P_{3}(\boldsymbol{Z}), \quad \boldsymbol{Y}_{t}=P_{3}(\boldsymbol{Y}), \tag{13}\\
& p(U)=p\left(Z_{j}\right)=p\left(Y_{j}\right)=0, \quad p\left(\Phi_{i}\right)=1, \\
& E_{3}=E_{1}[\boldsymbol{\Phi}, \boldsymbol{Y}, \boldsymbol{Z}], \\
& P_{3}=P_{1}\left[U+\varepsilon^{2} U^{2}-\varepsilon U_{x}\right]+24 \varepsilon^{2} E_{3} \partial-12 \varepsilon^{2} E_{3, x}, \tag{14}
\end{align*}
$$

together with its contraction onto (5)-(6):
$u=U+\varepsilon U_{x}+\varepsilon^{2} U^{2}+4 \varepsilon^{2} E_{3}$,
$\varphi=P_{4}(\Phi), \quad z=P_{4}(\boldsymbol{Z}), \quad y=P_{4}(\boldsymbol{Y}), \quad P_{4}:=1+2 \varepsilon \partial+2 \varepsilon^{2} U$.
Since U is a conservation law (CL) in (13) inverting (15) provides a new construction for an infinity of cls for (5)-(6), in addition to the standard formula \{Res $L^{k / 2}, k \in Z_{+}$, \tilde{L} in (7) \}.

The second case of the s-KdV system is

$$
\begin{align*}
& u_{t}=\partial\left(3 u^{2}-u_{x x}+3 E_{4}\right), \\
& \boldsymbol{\omega}_{t}=P_{5}(\boldsymbol{\omega}), \quad \boldsymbol{\sigma}_{t}=P_{5}(\boldsymbol{\sigma}), \quad f_{t}=P_{5}(\boldsymbol{f}), \tag{16}\\
& p(u)=p\left(f_{i}\right)=0, \quad \quad \quad p\left(\omega_{j}\right)=p\left(\sigma_{j}\right)=1, \\
& E_{4}=E_{4}[\boldsymbol{\omega}, \boldsymbol{\sigma}, f]=\boldsymbol{\omega}^{t} \boldsymbol{\sigma}+\boldsymbol{f}^{t} f, \quad P_{5}=P_{5}[u]=6 \partial u-\partial^{3}, \tag{17}
\end{align*}
$$

with the s-mKdV system

$$
\begin{align*}
& v_{t}=\partial\left(2 v^{3}-v_{x x}+6 v E_{5}\right), \\
& c_{t}=P_{6}(\boldsymbol{c}), \quad \quad \boldsymbol{\beta}_{t}=P_{6}(\boldsymbol{\beta}), \quad \gamma_{t}=P_{6}(\boldsymbol{\gamma}), \tag{18}\\
& p(v)=p\left(c_{i}\right)=0, \quad p\left(\beta_{j}\right)=p\left(\gamma_{j}\right)=1, \\
& E_{5}=E_{4}[\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{c}], \quad P_{6}=P_{5}\left[v^{2}\right]+6 E_{5} \partial, \tag{19}
\end{align*}
$$

and the Miura map

$$
\begin{align*}
& u=v_{x}+v^{2}+E_{5}, \quad \boldsymbol{\omega}=P_{7}(\boldsymbol{\beta}), \quad \boldsymbol{\sigma}=P_{7}(\boldsymbol{\gamma}), \\
& \boldsymbol{f}=P_{7}(\boldsymbol{c}), \quad P_{7}:=\partial+2 v . \tag{20}
\end{align*}
$$

The s-KdV system $(16,17)$ has the first Hamiltonian structure

$$
\begin{array}{lr}
u_{t}=\partial(\delta H / \delta u), & f_{i, t}=\partial\left(\delta H / \delta f_{i}\right) \\
\omega_{j, t}=-2 \partial\left(\delta H / \delta \sigma_{j}\right), & \sigma_{j, t}=2 \partial\left(\delta H / \delta \omega_{j}\right) \\
H=u^{3}+\frac{1}{2} u_{x}^{2}+3 u E_{4}, & \tag{21'}
\end{array}
$$

and does not have a second Hamiltonian structure unless both ω and $\boldsymbol{\sigma}$ are absent and f is a scalar, in which case the variables $u \pm f$ decouple (16)-(17) into a pair of non-interacting KdV fields. Again, since (16)-(17) is Galilean invariant, one uses (20) to construct a deformation of (16)-(17):

$$
\begin{align*}
& U_{t}=\partial\left(3 U^{2}-U_{x x}+2 \varepsilon^{2} U^{3}+3\left(1+2 \varepsilon^{2} U\right) E_{6}\right) \\
& \boldsymbol{\Omega}_{t}=P_{8}(\boldsymbol{\Omega}), \quad \mathbf{\Sigma}_{t}=P_{8}(\boldsymbol{\Sigma}), \quad \quad \boldsymbol{F}_{t}=P_{8}(\boldsymbol{F}), \tag{22}\\
& p(U)=p\left(F_{i}\right)=0, \quad p\left(\Omega_{j}\right)=p\left(\boldsymbol{\Sigma}_{j}\right)=1, \\
& E_{6}=E_{4}[\boldsymbol{\Omega}, \boldsymbol{\Sigma}, \boldsymbol{F}], \quad P_{8}=P_{5}\left[U+\varepsilon^{2} U^{2}\right]+6 \varepsilon^{2} E_{6} \partial, \tag{23}
\end{align*}
$$

together with its contraction $C(\varepsilon)$:

$$
\begin{array}{lll}
u=U+\varepsilon U_{x}+\varepsilon^{2} U^{2}+\varepsilon^{2} E_{6}, & \omega=P_{9}(\boldsymbol{\Omega}), \\
\boldsymbol{\sigma}=P_{9}(\Omega), & f=P_{9}(\boldsymbol{F}), & P_{9}=1+\varepsilon \partial+2 \varepsilon^{2} U, \tag{24}
\end{array}
$$

onto (16)-(17). Since the Lax form of (16)-(17) is not known, the deformation (22)-(23) provides the only available route to construct an infinity of cls for the s-KdV system (16)-(17): since U in (22) is a cl , one inverts (24) to find $U=\Sigma_{n \geqslant 0} \varepsilon^{n} H_{n}$. Notice, that in contrast to the deformed s-KdV system (13)-(14), our new deformed system (22)-(23) depends only upon ε^{2} while the map $C(\varepsilon)(24)$ depends upon ε. Thus, one obtains an auto-Bäcklund transformation $C(\varepsilon)^{-1} \circ C(-\varepsilon)$ of the s-KdV system (16)-(17) into itself.

In conclusion, the formulae presented here constitute, no doubt, only a tip of the puzzling iceberg and only a small part of the whole story. For example, applying extension (2^{\prime}) to the operator

$$
L=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \xi+\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) v
$$

of the mKdv hierarchy, and specialising the resulting \tilde{L} to be a skew-adjoint and - 1 -circulant (Kupershmidt and Wilson 1981), results in a s-mKdV system very different from both (10)-(11) and (18)-(19).

I thank Yu I Manin for comments on super-integrable systems. This work was supported in part by the National Science Foundation.

References

D'Auria R and Sciuto S 1980 Nucl. Phys. B 171189
Kupershmidt B A 1982a Lett. Math. Phys. 685

- 1982b Discrete Lax equations and differential-difference calculus, ENS Lecture Notes, Paris
- 1982c J. Math. Phys. 231427
- 1984a Phys. Lett. 102A 213
- 1984b Proc. Natl. Acad. Sci. USA to appear

Kupershmidt B A and Wilson G 1981 Invent. Math. 62403
Manin Yu I and Radul A 1984 A Supersymmetric Extension of the Kadomtsev-Petviashvili hierarchy, preprint Ol'shanetsky M A 1983 Commun. Math. Phys. 8863
Wilson G 1979 Math. Proc. Camb. Phil. Soc. 86131

